T.P. Maple n° 5

Ce TP est inspiré de la partie algorithmique de CCP-TSI-2002-2.

1 Présentation du problème

Le but est ici de calculer la longueur approchée d'une courbe plane entre deux points.

Le paramètre, appelé t, varie entre t_0 et t_1 .

Dans tous les cas, on utilisera n + 1 points de la courbe, appelés Ai de i = 0 à n, qui correspondent à un découpage de $[t_0, t_1]$ en n segments égaux.

On programme 2 stratégies :

- 1) Une procédure Lmin qui calcule la somme des longueurs des segments reliant les points A_i indiqués. Si la concavité de la courbe ne change pas, cette procédure calcule à l'évidence un *minorant* de la longueur de la courbe.
- 2) Une procédure Lma j qui calcule aussi une somme de longueurs de segments.

Les points extrèmes sont A_0 et A_n , mais les points intermédiaires choisis, appelés B_i de i = 1 à n, sont les points d'intersection des tangentes à la courbe en A_{i-1} et A_i .

Il y a donc ici n + 1 segments! Si la concavité de la courbe ne change pas, cette procédure calcule le plus souvent un *majorant* de la longueur de la courbe.

Faire une figure illustrant la situation avec n = 3.

2 Procédure Lmin

2.1 Lmin pour une paramétrisation en cartésiennes

Ecrire une procédure Lmin.

Celle ci a 5 paramètres : $t \mapsto x(t)$, $t \mapsto y(t)$, t_0 , t_1 et n; par ailleurs, elle donne une valeur approchée de la longueur cherchée.

2.2 Petite idée de l'erreur commise

Ecrire une procédure LminApp.

Celle ci a 5 paramètres : $t \mapsto x(t)$, $t \mapsto y(t)$, t_0 , t_1 et e.

C'est la première valeur de $\text{Lmin}(x, y, t_0, t_1, 2^{p+1})$ telle que $\left|\text{Lmin}(x, y, t_0, t_1, 2^p) - \text{Lmin}(x, y, t_0, t_1, 2^{p+1})\right| \leq e$.

2.3 En polaires

Ecrire des procédures LminPol et LminPolApp qui font la même chose pour une courbe en polaires; il y a donc un paramètre de moins!

3 Procédure Lmaj

3.1 Les points B_i

Ecrire 2 procédure Bx et By qui calculent les coordonnées du point B_i . Celles ci ont paramètres : $t \mapsto x(t)$, $t \mapsto y(t)$, t_0 , t_1 , n et i.

3.2 Lmaj pour une paramétrisation en cartésiennes

Ecrire une procédure Lma j.

Celle ci a 5 paramètres : $t \mapsto x(t)$, $t \mapsto y(t)$, t_0 , t_1 et n; par ailleurs, elle donne une valeur approchée de la longueur cherchée.

2 T.P. Maple nº 5

3.3 Petite idée de l'erreur commise

Ecrire une procédure Lma jApp.

Celle ci a 5 paramètres : $t \mapsto x(t)$, $t \mapsto y(t)$, t_0 , t_1 et e.

C'est la première valeur de $\operatorname{Lmaj}(x,y,t_0,t_1,2^{p+1})$ telle que $\left|\operatorname{Lmaj}(x,y,t_0,t_1,2^p)-\operatorname{Lmaj}(x,y,t_0,t_1,2^{p+1})\right|\leqslant e$.

4 Comparaison des deux procédés

Ecrire une procédure L de paramètres $t \mapsto x(t)$, $t \mapsto y(t)$, t_0 , t_1 et e qui calcule Lmin et Lmaj telles que la différence des valeurs de Lmin $(x, y, t_0, t_1, 2^p)$ et Lmaj $(x, y, t_0, t_1, 2^p)$ soit en valeur absolue inférieure à e.

5 Application

En cartésienne, on essayera et appliquera ces procédures à un demi cercle de rayon 1 ; on comparera les résultats avec une valeur approchée de π .

En polaires, on le fera avec le cercle de rayon $\frac{1}{2}$, d'équation $\rho = \cos \theta$, c'est à dire pour θ variant entre 0 et π ; on comparera les résultats avec une valeur approchée de la longueur exacte, à savoir : π .

La première valeur de *n* utilisée sera 10.

La première valeur de *e* sera 0.01.